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Abstract~This paper explores the relationships among several existing procedures for specifying
linear and nonlinear constitutive relations for hyperelastic Cosserat or directed curves from three­
dimensional considerations. These procedures are designed to ensure that exact solutions of the
balance laws of the directed curve are in approximate agreement with the corresponding exact
solutions of classical continuum mechanics. The particular case of the linearized Bernoulli-Euler
beam theory is also examined. In addition a new procedure is proposed in this paper. This procedure
is used to facilitate comparisons among various existing procedures. Although it is conceptually
simple, it illustrates the inherent arbitrariness in specifying constitutive relations for elastic rods.©
1998 Elsevier Science Ltd.

I. INTRODUCTION

The issue of constitutive relations for a directed curve, which is a theoretical model for a
rod-like body, is examined in this paper. Of particular interest are the various manners in
which these relations are obtained, their relative merits and their inter-relationships. The
particular theory of a directed or Cosserat curve discussed in this paper was developed by
Green, Naghdi and their co-workers and dates to Green and Laws (1966). A direct approach
is used there and the balance laws are stated without any obvious motivation from three­
dimensional considerations. Subsequent developments, by Green, Laws and Naghdi (1967,
1968), Green and Naghdi (1970, 1979, 1985, 1990, 1993) and Green, Naghdi and Wenner
(1974a, b) established the correspondances between the theory of a directed curve and
three-dimensional continuum mechanics. t One of the main additional issues in these papers
was the development of linear and nonlinear constitutive relations for the directed curve.

By way of additional background, we recall that in the development of the balance
laws for a directed curve with two directors from the three-dimensional theory in Green et
al. (1968, 1970, 1974a, 1985, 1993), the position vector r* of a material point of a body £f/j

is approximated by

r* = r*W ,ez, (, t) = r«(, t) +Wd,«(, t). (1)

In equation (1) and the remainder of this paper, {el, ez, ( = e3} is a convected coordinate
system which uniquely identifies the material points of £f/J.t The vectors d, and dz are known
as directors. The approximation (1) is the basis for motivating the balance laws for the
directed curve and constitutive relations for the assigned force f, assigned director forces F,
and inertia coefficients y" and y"IJ.§ In addition, (1) enabled the theory of a directed curve
to be successfully used by Naghdi and Rubin (1984) in their discussion of constrained
rod theories, and by Naghdi and Rubin (1989) and Nordenholz and O'Reilly (1997) in
applications involving contact.

t The reader is referred to the survey paper by Naghdi (1982) and the paper by Green and Naghdi (1995) for
additional references and comments on this theory.

t In this paper, lower case Greek indices range from I to 2, upper case Latin indices range from I to 3 and
the summation convention for repeated indices is employed.

§ For the reader's convenience, a summary of these and related results is presented in the Appendix.
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Given the central role of (I) in applications of the theory of a directed curve, it is
surprising to find that it is not used to determine the strain-energy t/J of the directed curve
from the strain-energy t/J* of the three-dimensional body. The function t/J is used to deter­
mine constitutive relations for the contact force n, the contact director forces m' and the
intrinsic director forces k' pertaining to the directed curve. Here, the main issue is to choose
t/J in such a manner as to obtain a correspondence between the solutions of the balance
laws for the directed curve and the balance laws for three-dimensional elasticity. However,
a significant difficulty was noted on page 913 of Green et at. (l968):t

"We observe that in practise it will be impossible to compute A' in (8.15) from the
three-dimensional Helmholtz function A* ;and A' must be regarded as an arbitrary
function of its arguments."

These comments were prompted by their earlier observations in Green et at. (1967) that
the t/J obtained by directly integrating t/J* produces results which are in poor agreement
with the exact solution for the pure flexure of a three-dimensional body. Their observations
in this regard were motivated by the earlier work of Volterra (1956) and Antman and
Warner (1966) where this integration was proposed.t

It is crucial to note that the criticism of Green et at. (1967) applies when the dis­
placement of the three-dimensional body that the directed curve is modeling does not satisfy
a relation of the form (I). Indeed, an issue of considerable interest is the manner in which
comparisons between three-dimensional continuum mechanics and the theory of a directed
curve may be made when this situation arises. We will not address this issue here, but refer
the reader to Section 7 of Rubin (1996) where a discussion may be found. We also take this
opportunity to remark that several of Green, Naghdi and their co-workers' developments
for rods were motivated by corresponding developments for shells and plates where related
issues arise [cf., e.g. Sections 9 and 10 of Novozhilov (1964), Sections 16-24 of Naghdi
(1972), Carroll and Naghdi (1972), Naghdi and Rubin (1995) and Reissner (1950)].

In this paper, after recording the balance laws and constitutive equations for a directed
curve in Section 2, we examine three approaches for obtaining the nonlinear constitutive
relations from three-dimensional considerations. Our focus is to examine the relative merits
of these procedures. The first approach examined is the direct integration of t/J*.§ In Section
3.2, a new procedure is discussed which is based on an additive decomposition. This
procedure is motivated by the use of the directed curve to model situations in three­
dimensional continuum mechanics where (1) does not hold. We also found that this
procedure provided a convenient viewpoint for comparing the various procedures used in
the literature. Specifically, we propose that

(2)

where t/J 1is determined by integrating t/J* and t/J2 is specified. One criterion for the speci­
fication of the function t/J2 is such that the solutions from the three-dimensional theory
agree in an approximate sense with those for a directed curve. In Section 3.3, the approach
developed by Rubin (1996) is discussed and then the inter-relationships among the three
procedures are examined.

In Section 4 of this paper, the specific case of a linearly elastic rod is examined. The
linearized versions of the three procedures discussed in Section 3 are first presented. In
particular, the constitutive relations from these procedures are compared with results from
the investigations of Green et at. (1967, 1974b) and Green and Naghdi (1979) on exact
solutions of the balance laws for a directed curve and those for classical linear elasticity.

t In the notation of the present paper, t/J = A' and t/J* = A*' Their equation (8.15) corresponds to (12) below.
For additional comments on this point see page 452 of Green 1:'1 al. (l974a) and page 127 of Green and Naghdi
(1990).

t A discussion of the criticisms of Green 1:'1 al. (1967) is presented in Antman (1972) [cf. also Antman and
Marlow (1991)].

§A procedure of this type for a different rod theory was discussed by Simmonds. His work is summarized in
Libai and Simmonds (1988) and shows how an integration procedure can be performed using power series
expansions of the functions ljJ* for various nonlinear elastic materials.
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The Gibbs free-energy approach used in Green and Naghdi (1990)t and the specific case
of the Bernoulli-Euler beam theory considered by Davi (1992), Dill (1992) and Love (1944)
are discussed in Sections 4.4 and 4.5, respectively. The corresponding developments for the
Timoshenko beam theory are easily inferred from the discussion in Section 4.

For additional background on the tensor operations and notations used in this paper,
the reader is referred to Section 1.1 of Casey and Naghdi (1985) or Gurtin (1981).

2. BACKGROUND ON THE THEORY OF A DIRECTED CURVE

We recall that a directed curve f!l is a material curve !E embedded in Euclidean three­
space, together with two directors, d, and dz, which are associated with each material point
of !E. The motion of f!l is specified by three vector-valued functions

(3)

where ~ is a convected coordinate and r is the position vector of a material point of !E
[Section 9 of Naghdi (1982)]. It is assumed that the scalar triple product [d 1d2d3] > 0, where
d3 = ar/a~. A fixed reference configuration of flJl is specified by the functions R = R(~) and
D, = D,(~), where [D1D2D3] > 0 and D3 = aR/a~. It is also convenient to define the recipro­
cal vectors Dk and dk by Dk

• D, = dk
• di = c5r, where c57 is the Kronecker delta.

For convenience, we employ the direct notation which was originally developed in
Section 13 of Naghdi (1982). Several of his results were subsequently extended by Bechtel
et al. (1986), O'Reilly (1995) and Rubin (1996). The invertible tensor F is defined by

F =d;®H.

The additional tensors which are used to describe the deformation of f!l are

(4)

ad, 3

G, = a~ ®D-,

I T
E = :2(F F-I),

aD, 1

oG, = a~ ® D-,

(5)

In other works, e.g. Green et al. (1974a), the deformation measures "Yu and K ai are used.
These measures are related to the tensors E and K, as follows:

(;k = d;' dk - Di ' Dk = (2ED;) "Db

ad, aDa
Ka ; = a~ 'di - 8[" Di =(Ka D3)' D i · (6)

It turns out to be inconvenient for the present purposes to use Ka . Instead, the following
tensors are used:

_ I - 1 (ad,;) 3l, = F G, =(2E+I) (Ka+oGa) = a(d D i ® D . (7)

The introduction of these tensors follows Naghdi and Rubin (1995) and Rubin (1996).
They afford considerable simplification when dealing with constitutive relations. In an
approximate infinitesimal theory of a directed curve whose reference configuration is such
that oGa = 0, the approximations for ;., and K, are indistinguishable.

Associated with the contact force n, the contact director forces rna and the assigned
director forces ka are the tensors, from Section 13 of Naghdi (1982),

t An earlier version of this procedure is presented in Section 5 of Green et al. (I 974a).
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jd;;N = n® d3 , jd;;K = k' ® da, jd;;M' = rna ® d3 , (8)

where d33 = d3 • d3• In addition, it is convenient to define

Following Rubin (1996), we also define two additional tensors:

(9)

(10)

In (10), D 33 = 0 3 ' 0 3, The relation of these additional tensors to n, rn' and k' is easily
inferred from (8) and (9).

The balance laws for a directed curve can be written in the form, from Section 11 of
Naghdi (1982),

(11)

In (11), the superposed dot denotes the material time derivative, A = jD;; Po is the mass
density per unit length of the directed curve and Po = Po«(). The relations between the
various quantities in (11) based on three-dimensional considerations are discussed in the
Appendix.

The constitutive relations for the fields n, rna and k' are obtained from the standard
assumptiont

(12)

where tr denotes the trace operation and

(13)

Using a standard procedure [see, e.g. Naghdi (1982), O'Reilly (1995) or Rubin (1996)]
and invoking the moment of momentum balance law (11)6' the constitutive relations are
obtained:

at/! - , at/!
s = Po aE ' M = Po a;: .,

(14)

The constitutive relations for n, rn' and k' can be obtained using (8)-(10).
It is convenient to recall the linearized constitutive relations for the directed curve

from Green et al. (1974a, 1979). The reference configuration of the rod is assumed to be
straight, ( is identified with the Cartesian coordinate X3, and OJ = ej, where ej are (orthonor­
mal) Cartesian basis vectors. In this theory, the components of the strain tensors 2E and
)., (or K,) are approximated by

(15)

respectively, where OJ = dj - OJ. The constitutive relations (14) simplify in this case to

t With the assistance of (7), these expressions follow from Eqns (2.34) and (2.40) of O'Reilly (1995).
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3 aJji a aJji I fJ fJ aJji
n - 2} - n -} - - (ka +k ') = 2/' -- ,- "0 ' - '0 ' -Y33 Ya3 2 aYaf!

1Ol3

(16)

where ni = n •ei , m,i = rn" ei and k,i = k" ei . These relations are supplemented by the
linearized moment of momentum balance law:

(17)

In (16), the strain energy Ii; = Ii;(Yi3' (1/2)(Y'fJ+YfJ,)' ",i, X3) where we have used a tilde to
distinguish the linearized strain-energy Ii; and the nonlinear strain-energy ljJ. Alternatively,
if the Gibbs free energy cf> is used, then the relations corresponding to (16) are

(18)

where cf> = cf>(n i
, (1/2) (k,fJ +k fJ,), m,i, X3). The Gibbs function and strain-energy function are

related by a Legendre transformation defined by (16) and

(19)

The definition of cf> provided by (19) differs from the one used in Green et al. (1974a) by a
multiplicative factor of - 1.

3. SPECIFICATIONS FOR THE STRAIN-ENERGY OF A DIRECTED CURVE: THE
NONLINEAR CASE

In this section, we examine specifications for ljJ based on three-dimensional consider­
ations. The first of these specifications is the direct integration mentioned earlier. Next, a
new specification is discussed which is based on the additive decomposition of ljJ. This
specification is also related to the direct integration procedure. The third specification was
recently proposed by Rubin (1996). It is intimately related to earlier work on shells and
plates by Naghdi and Rubin (1995), and we will show how it is related to the new
specification proposed here. The relative merits of the various procedures are also discussed,
although this issue is hindered by the lack of exact solutions from three-dimensional
continuum mechanics that are presently available.

3.1. The direct integration approach
To examine the direct integration approach, it is appropriate to recall that the balance

laws for the directed curve were motivated by three-dimensional considerations [cf., e.g.
Green and Naghdi (1970, 1993)]. Several of these results are recalled in the Appendix. To
specify ljJ by direct integration, it is convenient to retrace the development of the expression
for the mechanical power by Green and Naghdi (1970,1985,1993) and Green et al. (1974).

As noted in the Appendix, to model the deformation of a three-dimensional body IJB
using the directed curve, one chooses the convected coordinates ei such that the following
representation holds in the fixed reference configuration "0 of IJB :

It follows from (AI) that

R* = R(~)+e'D,(I;). (20)

(21)

After substituting the approximation (1) for r* and the representation (20) in (AI), it may
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be seen that the three-dimensional deformation gradient F* = g1 ® G i * is then approxi­
mated by F*:

where

F* = FA, (22)

(23)

The corresponding approximation for the three-dimensional Lagrangian strain tensor
E* = (1/2)«F*)TF*-I), which we denote by E*, is obtained by substituting (22) for F*
into the definition of E* :

(24)

The material time derivative of E* is obtained after a long, but straightforward, calculation
and, in the interests of brevity, is not recorded here.

We recal1 that the constitutive relations for a hyperelastic body are obtained from a
work-energy theorem:

r~2f p~~*(E*,Gr'Gt,e;)dV= r~~2f tr(S*,E*)dV,
J~l sf J~I .W

(25)

where 1jJ* is the strain energy density function, p~ is the mass density and S* is the second
(or symmetric) Piola-Kirchhoff stress tensor. The material surface d, and the coordinates
~, and ~2 are defined in the Appendix. Using (24), the mechanical power of;JJ is approxi­
mated by

where

JD;;s = LAS*ATjG*de l de2
,

/D33 M" = LFTFAS*G*38"y 'G*de l de 2 ® D3·

(26)

(27)

In (27), y!Q* = [GrG~Gn. The results (27) are in expected agreement both with (A9)4.5.6
and (AlO). Provided one considers the approximation (22) for F*, they are also in expected
agreement with results in Green and Naghdi (1970, 1985, 1993) and Green et al. (1974a)
where the Cauchy stress tensor T* is used. Furthermore, the right-hand sides of (26) and
(12) are in expected agreement.

Using (AI), (20)~(22) and the local form of (26), in the direct integration procedure
t/J of the directed curve is specified by IjJ = 1jJ1' where

(28)

Clearly 1jJ, has the functional form (13), and it is tacitly assumed that the integral in (28) is
well defined. It also should be noted that G;t = G,*' G: was expressed as a function of D h

oG, and e' in writing (28).
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If the deformation of ~ is such that F* = FA, then the specification (28) and the
constitutive relations it provides [using (14)] for n, rna and k' are completely consistent with
the balance laws for the directed curve when the identifications recorded in the Appendix are
used. However, we know of no exact solutions ofthree-dimensional continuum mechanics of
the form F* = FA. Furthermore, for many problems where it is of interest to use the theory
of a directed curve F* 'I FA: an issue which, as Green et at. (1967) have pointed out, clearly
presents itself in the context of the linear theory.

3.2. An additive decomposition of the strain-energy
In contrast to previous works, we propose here to specify l/; by an additive decompo­

sition:

(29)

where l/;l is defined by (28) and l/;, have the functional form (13).t The function l/;2 is
subject to a restriction: when F* = FA, then l/;2 = O. Furthermore, the specification (29) is
consistent with the work-energy theorem of the three-dimensional theory only when
A1/J2 = O. Once l/;2 has been specified, the constitutive relations for n, rn' and k' can be
obtained using (29) and (14).

The presence of the function l/;2 is motivated by applications of the theory of a directed
curve to the modeling of three-dimensional continuua where F* 'I FA. This situation arises
when the directed curve is used to model the flexure of a linearly elastic body.t In these
cases, an approximation procedure is used to obtain the constitutive relations for n, m' and
k". As will be illustrated later, several procedures of this type are formally equivalent to the
specification (29).

For future purposes, we note that we may approximate E* by E* in the constitutive
relation S* = pt(ol/;*I oE*) to determine the corresponding approximation S* to S* :

(30)

In addition, assuming that the constitutive relations for Sand lVr can be inverted, at least
locally, to determine E and A, as functions of S and lVI' :

(31)

Using (30) and (31), one can obtain the functions

(32)

By construction, these functions will satisfy (27) when l/;2 = O. Moreover, they are clearly
influenced by l/;l and l/;2' Indeed in Section 4.2, the resulting functions in a linear theory
will not satisfy (27) for a specific l/;2 'I O.

The merit of the specification (29) is that it ensures that the balance laws for the
directed curve are satisfied if the motion of a three-dimensional body is such that F* =FA:
an advantage this specification shares with the one discussed in Section 3.1. However, a
feasible procedure for calculating l/;2 for non-linearly elastic bodies remains unknown. This
is partially attributable to our lack of knowledge of exact solutions of the form F* = I'A.

3.3. The specification of Rubin
Rubin (1996) considers restrictions on l/; such that exact solutions of the balance laws

for the directed curve are consistent with exact solutions for homogeneous deformations

t It is manifestly possible to specify ljJ by a multiplicative decomposition, although we do not explore such
specifications here.

t As noted on page 297 of Green et al. (1967), it is not possible to model the three-dimensional displacement
fields for the pure flexure of a rod using (1) and (20). Related comments are contained in Section II of Antman
(1972) and Chapter 6 of Novozhilov (1953).
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of homogeneous bodies. A homogeneous deformation of fJl is such that F* = F*(t). It
follows from (20)-(23) that the corresponding deformation for a directed curve is F = F*(t)
and A = I. Consequently, Rubin's restrictions for elastic rods are

(33)

These restrictions motivated Rubin to consider the following decomposition of ljJ.t

(34)

where

(35)

and A" are defined by (Al3). The function \f is subject to the restrictions

(36)

These restrictions ensure that ljJ satisfies (33).
Rubin's procedure has the significant advantage that it is based on solutions for three­

dimensional continuum mechanics which have been extensively studied [cf., e.g. Truesdell
and Noll (1992)]. In addition, as proved by Ericksen (1955), static, homogeneous defor­
mations are the only controllable, static deformations possible in every homogeneous,
isotropic, hyperelastic body.:\: In this light, Rubin's work may be viewed as a bridge between
the experimental determination of constitutive relations in three-dimensional continuum
mechanics and the specification of the corresponding quantities for a directed curve.

It is clearly of interest to compare Rubin's specification with the two others discussed
earlier. First, if ljJ = ljJ, [cf. (28)], then ljJ trivially satisfies the restrictions (33). Secondly,
because ljJ2 = 0 for homogeneous deformations, the specification (29) also satisfies the
restrictions (33). It is also of interest to note that, as in the specification (29), only part of
ljJ is determined from ljJ* by (34). Finally, the specification (34) shares a disadvantage of
(29) : there are numerous possible choices of \f which satisfy (36).

4. SPECIFICATIONS FOR THE STRAIN-ENERGY OF A DIRECT CURVE: THE
LINEARLY ELASTIC ROD

In this section, we specialize the discussion of Section 3 to the case where fJl is
composed of an isotropic, linearly elastic material. In addition, several other procedures
for determining the linearized strain-energy i/J are discussed. One of these is the Gibbs free
energy approach developed by Green and Naghdi (1990). The others pertain to Bernoulli­
Euler beams and were discussed by Dav! (1992), Dill (1992) and Love (1944), among
others. For convenience, the tilde which distinguished the linearized strain-energy in Section
2 is omitted henceforth.

t These results are from Section 4 of Rubin (1996). To facilitate comparisons with the results of the present
paper, we have made some minor notational changes to his results.

t A controllable deformation is a deformation which is sustained by the application of surface tractions alone.
Beatty (1987) has an interesting discussion of their importance. Recently, Faulkner and Steigmann (1993) have
discussed deformations of this type for a particular constrained rod theory.
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4.1. The direct integration approach
We first consider the linearized version of the procedure discussed in Section 3.1. In

so doing, several preliminary results which will be used in the subsequent subsections are
also established. Several of these results and the integration procedure itself are contained
in the papers of Green et at. (1967, 1974a) and are reproduced here in the interests of future
comprehension.

For the linear theory of interest, the convected coordinates {8i
} are chosen to be a

Cartesian coordinate system {x;} and D i = ei' The three-dimensional strain-energy for this
case is [cf., e.g. Section 26 of Sokolnikoff (1956)],

* * * _ Ev * * * 2Pol/J (eik) - 2(1 +v)(I_2v)(e ll +e22 +e33) ,

+ E (* 2+ * 2+ * 2+ 2 * 2+ 2 * 2+ 2 * 2) (37)2(1 +v) ell e22 e33 e 12 e23 e 13 ,

where E is Young's modulus and v is Poisson's ratio. In conjunction with (37), the Gibbs
free energy ¢* can be defined in the standard manner using a Legendre transformation:t

(38)

It follows from (38) that

*A.*(*) v(* * *)2 (I+V)(*2+*2+*2+2*2+2*2+2*2)
PO'/' 'ik = - 2E 'II +'12 +'33 +~ 'II '22 '33 '12 '23 '13'

(39)

In (38) and (39), ,~ are the components of a (symmetric) stress tensor: S* = ,~ei ® en' The
linear strains measures e;t and displacements ut are

1(aur aut) * (* R*)e;t = - -a + -a ' Uk = r - . ek'
2 Xk Xi

(40)

Finally, it is assumed that the reference configuration of f!J has two planes of symmetry:
Xx = O.

We are now in a position to calculate l/Jl for the directed curve by paralleling the
developments in Section 3.1. The only differences are that y;t are replaced by e;t and (15)
replaces (5) and (7) :

(41)

After a long calculation using (28), (37) and (41), one obtains

t The difference between (39) and eqn (5.3) of Green et al. (l974a) is due to a trivial difference in the Legendre
transformations used.
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where

- - - ,uA (I - v) - - -
k l = k 2 = k 3 = 2(I-2v)' k 4 = ks = k 6 = j1.A,

klo = k l2 = j1.12 , k ll = k l3 = j1.1J,

- - - j1.Av
k 7 = kg = k 9 = (I _ 2v) ,

- - Ell (I-v)
k l4 =O,k ls = (I+v)(1-2v)'

- EI2(I-v)
k l6 = ~~-~- k l7 = O.

(I +v)(I-2v)'
(43)

In addition, j1. = E/(2(1 + v)) is one of Lame's constants and

(44)

The quantities I, are the moments of area with respect to the X a axes.
It will be of future interest to examine the approximations to the components of S*

[cf. (30)~(32)] which result from using the specification h/J = Je!/Jl' First, the constitutive
relations for n, rna and k" are determined using (I6), (17) and (42). These relations are then
inverted to determine Yij and K ai as functions of d, m ai and k". An additional calculation
which uses (37), (38) and (42) determines T~ as functions of Yij and K,i' To simplify the
resulting expressions for Tfl' T~2' and Tt3' the following identities are used:

- - - ,uA (I - v)
k l =k2 =k3 = 2(I-2v)' (45)

However, the specifications (43) are not used for the remaining coefficients. Combining the
results of the aforementioned calculations yields

(no sum on ct),

(46)

Another calculation using the values of kj, . .. ,kin provided in (43) shows that functions
T~ are in accord with the linearized versions of (27) and (A9)4.s.6' from Section 5 of Green
et al. (I974a),
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(47)

The terms of (46)4 in the curly brackets {} are such that their contributions to the integrals
in (47) are zero.

The specifications of kJ, ... ,k17 for homogeneous, isotropic, linearly elastic bodies of
constant cross-sectional area were determined in a series of works by Green et al. (1967,
1974a) and Green and Naghdi (1979) using various comparisons with exact solutions from
three-dimensional elasticity. We summarize them here:

(48)

where, fZ is the torsional rigidity, and we have dropped the overbars to distinguish these
results from those obtained using ).IjJ]. The function f(v) has numerous values in the
literature. In particular, Rubin (1996) proposed thatf(v) = /l/E, while Naghdi and Rubin
(1989) usedf(v) = 5/l/6E. These choices are equivalent to assuming shear coefficients of 1
and 5/6, respectively.

If ).1jJ = ),1jJ1, then a problem noted by Green et al. (1967) becomes evident. Specifically,
the flexural rigidities k1S and k16 (as predicted by ).1jJ I) differ considerably from k]s and k 16.
For the torsion of a rod which does not have a constant cross-sectional radius R, a similar
discrepancy arises between the coefficients k12, k13 , k14 and k 12, k 13 , k 14. Consequently, exact
solutions from three-dimensional linear elasticity and those for the linearly elastic directed
curve will be in poor agreement. However, it is important to note that several of the
coefficients in (43) are identical to those in (48). In particular, klO, k11 and k 17 are in
agreement with k lO, k l, and k 17• The latter coefficients were obtained by Green and Naghdi
(1979). An examination of the solution they used to establish these results [cf eqn (10.38)
of their paper] shows that the three-dimensional displacement fields are in agreement with
(1) and (20). We shall provide additional comment on the other coefficients later.

4.2. An additive decomposition of the strain-energy
The value of ),1jJ1 used for the specification (29) is given by (42). To resolve the

discrepancies noted above, it suffices to specify

2N2 =(ks -k5)')'~3 + (k6 -k6 )yL +(k I2 -k12 )KL +(k J3 -k I3 )KL

+k14 K12K21 +(k 15 -kJ5)K~3 +(k I6 -k1dKi3' (49)

Although this provides the correct coefficients k I, ... , k 17 , the deficiency inherent in the
selection ),1jJ = ),1jJ] must be known a priori.

With the specification ),1jJ = ),1jJ1+),1jJ2, where I.IjJ I is given by (42) and ),1jJ2 is given by
(49), the expressions for the approximations to the components of S* become:

1
r* = _(k12 +k21 )12 2A '
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(no sum on IX),

(50)

These results can be obtained from (46) by first dropping the overbars on k" ... ,k16 and
then using (48). However, (50) does not satisfy (47). Specifically, the equations for the
resultants nl

, n2
, m l3 and m 23 associated with flexure, and m21 and m l2 associated with torsion

are generally not satisfied.

4.3. The specification of Rubin
In Section 6 of Rubin (1996), the case of a straight rod similar to that discussed in this

paper is considered. In consonance with the restrictions (33), At/! is specified as an additive
decomposition of the form (34). Rubin's results for the coefficients kj , k2, k3 , k4 , ks, k6 , k7 ,

kg, k9 , are, as expected, identical.t This agreement also lends further support to Rubin's
assertion that the shear coefficient should be I. However, in order to specify all of the
coefficients, Rubin was forced to use the results of Green et al. (1967) and Green and
Naghdi (1979) for k lO , k1b k lS ' k l6 and k17 . In other words, the function qJ in (34) is
not completely specified by his restrictions and further recourse to solutions from three­
dimensional elasticity is necessary. In this context, he also notes that there is an inherent
arbitrariness in comparing solutions of the two theories in these cases. Finally, his results
for the linear case are equivalent to the specification (49) for At/!2 providedf(v) = J.1/E.

4.4. The Cibbsfree-energy approach o.[Creen and Naghdi
We now comment on the Gibbs free energy approach used by Green and Naghdi

(1990). An earlier version of this procedure is presented in Section 5 of Green et al. (1974a).
In this approach, which is used in a linear theory,t the approximation (1) and, in addition,
approximations of the form r il = ril(n/, m>/, k>') are used. From eqn (2.15) of Green and
Naghdi (1990), these approximations are

(51)

It should be noted that (51), by design, satisfy (47) and are in fact identical to (46) if the
terms in the curly brackets {} are ignored and (43) is used.

The approximations (51) may be substituted into (39) and the result integrated over
the material surface d(~). The resulting function is known as the Gibbs free energy cPGN of
the directed curve:

1 2v
2AcPGN = EA ((n 3

)2 + (k ll
)2 + (k22

)2 - EA (n 3kl1 + n3k 22 +k 11 k 22
)

+ _1_ (m 23 )2 + _1_ ((m 21 )2 + (m 22 )2) + _1_ ((m ll )2 + (m I2 )2)

Ell J.111 J.112

1 1 1+ _(m I3 )2 + _ ((n l )2 + (n 2
)2 + - (k12 +k21

)2). (52)
El2 J.1A 4

t As may be seen from (41), for a homogeneous deformation K o; = O. The nine coefficients associated with
the non-trivial strains Yoj can be ascertained from (42) by inspection.

tWe were unable to generalize Green and Naghdi's Gibbs free energy approach to the nonlinear theory.
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With the assistance of (18) and (19), the strain-energy At/JGN corresponding to (52) can be
calculated. Omitting details, the resulting expression for }.t/JGN can be obtained from (42)
by replacing k L5 and k l6 with k l5 and k 16 :

(53)

In other words, this procedure results in the correct flexural stiffnesses, however, the
torsional stiffnesses k12, k13 , k l4 predicted by this method are not in general agreement with
k 12, k 13 and k 14 •

A difficulty associated with the Gibbs free energy procedure, is that the approximations
(51) are not unique. Indeed, one could alternatively proceed with the approximations (46),
however, the value of A¢ obtained using (46) will clearly not be the same as (52). As with
the procedures discussed in Sections 4.2 and 4.3, recourse to three-dimensional solutions
must also be made with this procedure. A final point of interest is that if one attempts to
establish the expressions (50) corresponding to Ao/GN, then the results will be identical to
(50) withf= /lIE and k 12 , k 13 , k l4 replaced by k12, k13 , k14 • The resulting functions will not
satisfy (47), in direct contrast to (51).

4.5. The particular case of Bernoulli-Euler beam theory
As noted by Naghdi and Rubin (1984), among others, the theory of the directed

curve is sufficiently general that the Bernoulli-Euler beam theory may be developed as a
constrained theory. For the Bernoulli-Euler beam theory, it is well known that there are
several constraints on the functions d,.t The linearization ofthese constraints for an initially
straight rod implies that

I'll = 0, 1'12 = 0, }'n = 0,

KII = 0, Kn = 0, KI2+K21 = 0. (54)

The integrated expression for the strain-energy in this case may be obtained by substituting
(54) into (42). Despite the resulting simplifications, the flexural rigidities are again given by
k l5 and k l6 as opposed to the accepted values Ela [cf. Love (1944, Ch. XVIII)]. Furthermore,
the extensional stiffness is not the accepted value of EA, rather it is k3• A similar difficulty
arises in connection with the torsional stiffness. Clearly, by directly integrating the three­
dimensional strain-energy and imposing the constraints (54), the incorrect constitutive
relations for the Bernoulli-Euler beam theory are obtained. If the method proposed in
Section 4.2 were used, then A0/2 would be specified as

(55)

To motivate (55), we now proceed to discuss several other works on this theory.
First, Love's results, which are based on the earlier work of Kirchhoff and Clebsch,

use the exact Saint-Venant solutions for flexure and torsion of a three-dimensional body
and an approximation procedure for the state ofstrain. Recently, Dill (1992) has reexamined
these works, and presents a clear derivation of the constitutive coefficients for this theory:
k3 = EA, k12 +k13 = flfi, k l5 = Ell and k l6 = E12 • This derivation does not employ an inte­
gration of the strain-energy.

The discrepancies associated with the direct integration procedure are also apparent
from equations (3.7) and (3.26) of Davi (1992), who considers the rod as a model for a
three-dimensional constrained elastic body. In Davi's paper, an integration procedure is
used, which is similar to that recorded in the appendix, to establish the balance laws and

t Specifically, there are five constraints: d, = PD" d' d3 = D,' DJ , where P is a proper orthogonal tensor. We
do not include a detailed discussion of the indeterminate (or constraint) response functions here as they are readily
available in the literature, see, e.g., Green and Laws (1973) or O'Reilly and Turcotte (1996).
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constitutive relations for the rod. The discrepancy noted above, is removed by reinterpreting
the coefficients in (42) and (43) ; a methodology proposed by Podio-Guidugli (1989). t
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APPENDIX: THREE-DIMENSIONAL CONSIDERATIONS

We record here, from Green et al. (I 974a, 1993), the specifications for the quantities associated with the
directed curve in terms of the corresponding quantities in three-dimensional continuum mechanics.

We consider a three-dimensional body!JB and denote its fixed reference configuration and present configuration
by "0 and ", respectively. It is necessary to define a set of convected coordinates 8'. The position vectors of a
material point of!JB in these configurations are denoted by the respective vectors R* = R*W) and r* = r*(8', t).
Four sets of basis vectors for Euclidean three-space {gt}, {g*k}, {Gt} and {G*k} are defined in the usual manner:

iJr*
gt = gt(ll', t) = -, g*' 'g7 = ,51,

iJek

oR*
Gt = Gt(f!') = ~-, G*k. G7 = 61.

oek
(AI)

TI)Ldeterminant of the metric tensors associated with two of these bases are denoted by Jg* = det(,q!) and
J G* = det(G!), where g! = g7' gt and G! = G7' Gt We als.Q-rec~thatthe deformation gradient F* of:J6 has
the representation F* = gt@G*k and that J* = det(F*) = Jg*/v G*'

It is assumed that the body !JB is bounded by three material surfaces: F = F(e', e', ( = el
) = 0 and the two

material surfaces ( = 83 = (,. In the integrals which follow, s# = d(() is a material surface which corresponds to
a coordinate surface ( = constant, and ost = ri.<1 (0 is the material curve formed by the intersection of .<1 with
F 0= O. It is assumed that the resulting curve is closed. To model the deformation of :J6 using the directed curve, it
is first necessary to choose the convected coordinates e' such that the following representation holds in the fixed
reference configuration "0 of !JB :

(A2)

i.e. 83 = (, G: = D, and Gj = riR/o( +8'riD,/o(. We also note that

(A3)

The tensor oG, in (A3) is defined by (4h Furthermore, r* is approximated by (I).
To proceed, we recall the balance of linear and angular momenta and constitutive relations for an elastic

body.@ :

(A4)

In (A4), S* is the second (symmetric) Piola-Kirchhoff stress tensor, f* is the body force per unit mass, ljJ* is the
strain-energy function, and P6 = P6(f!') is the mass density per unit volume. We consider solutions of (A4) of the
form, [cf. (I), (7), (22) and (23)],

(A5)

where F = d; @ D'. Substituting (A5) into (A4), it is easily seen that the following three equations may be obtained:
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(
a) . _

-(FAS*) G*' + ptf* = pti'(~, t) +lfptd"(~, t),
afJ'

fJP(~(FAS*»)G*i +ptfJPf* = ptOI'i'(~, t) +OPlfptii"(~, t).
ao'

(A6)

These equations are used to establish partial differential equations for rand d".
By integrating (A6) over the region occupied by fJB in /(0, and then considering the partial derivative with

respect to ~, Green et al. (1970, 1974a, 1985, 1993) have shown that the resulting equations are respectively
equivalent to the balance of linear momentum for the directed curve,

(A7)

and the two balances of director momenta for the directed curve:

(A8)

The balance of angular momentum for both theories is identically satisfied, if the constitutive relations are properly
invariant under superposed rigid body motions. The constitutive relations discussed in this Appendix and Sections
2 and 3 are properly invariant and, consequently, the balance of angular momentum is not discussed.

The equivalence of (A7) to (A6), and (A8) to (A6), holds provided the fields in (A7) and (A8) are specified
by, from the Appendix of Green and Naghdi (1993),

A= jD;;po = LptJG*dO' dO', .icy" = LptexJG*dO' dO',

AY"P = f ptO"OP)G. dO' dO',
.'/

o=f T'dO'dO', m'=f T'O"dfJ'dO', k"=f T"dO'dO'.
,~ sf ,f!!

i.e. from (8)-(10)

~T= f/*S*(F*)TJG*dO' dO',

~M' = f/*S*G*JOO y'G* dO' dO' ® d3.

In writing (A9) and (AIO), the following identities were used:

T*i = .J9*T*g*' = JG*F*S*G*',

aR ar
D3 = a~' D" = D3'D3, d3 = a~' dlJ = dJ 'd

"

(A9)

(A 10)

(All)

(AI2)

where T* is the Cauchy stress tensor. It remains to provide the expressions for the assigned force f and assigned
director forces I" [from e.g. Green et al. (I 974a)] :

).1 = Lptf*JG* dO' dO' +i" (T*' -A" T*') dO' - (T*' -A"T*') dO',

AI" = Lptf*O"JG* dO' dO' +i"o"(T*' _;"'T*J) dO' -If(T*' - ;"'T*3) dO',

where;: = A'"g:+g! is a tangent vector to the surface F = O. Clearly, the forces f and I' contain contributions
from the three-dimensional body force f* and the tractions on the lateral surface of the body.

In the discussion of Section 3.3, the following two quantities defined by Rubin (1996) are used:

jD;;A = LJG* dO' dO', jD;;AA" = JDLIf JG* dO' dO',

where JD = [D,D,DJ].

(AI3)


